Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images
نویسندگان
چکیده
In this paper, we present a scheme based on feature mining and pattern classification to detect LSB matching steganography in grayscale images, which is a very challenging problem in steganalysis. Five types of features are proposed. In comparison with other well-known feature sets, the set of proposed features performs the best. We compare different learning classifiers and deal with the issue of feature selection that is rarely mentioned in steganalysis. In our experiments, the combination of a dynamic evolving neural fuzzy inference system (DENFIS) with a feature selection of support vector machine recursive feature elimination (SVMRFE) achieves the best detection performance. Results also show that image complexity is an important reference to evaluation of steganalysis performance. 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Feature Mining and Neuro-Fuzzy Inference System for Steganalysis of LSB Matching Stegangoraphy in Grayscale Images
In this paper, we present a scheme based on feature mining and neuro-fuzzy inference system for detecting LSB matching steganography in grayscale images, which is a very challenging problem in steganalysis. Four types of features are proposed, and a Dynamic Evolving Neural Fuzzy Inference System (DENFIS) based feature selection is proposed, as well as the use of Support Vector Machine Recursive...
متن کاملImage complexity and feature mining for steganalysis of least significant bit matching steganography
The information-hiding ratio is a well-known metric for evaluating steganalysis performance. In this paper, we introduce a new metric of image complexity to enhance the evaluation of steganalysis performance. In addition, we also present a scheme of steganalysis of least significant bit (LSB) matching steganography, based on feature mining and pattern recognition techniques. Compared to other w...
متن کاملImage Steganalysis Based on Co-Occurrences of Integer Wavelet Coefficients
We present a steganalysis scheme for LSB matching steganography based on feature vectors extracted from integer wavelet transform (IWT). In integer wavelet decomposition of an image, the coefficients will be integer, so we can calculate co-occurrence matrix of them without rounding the coefficients. Before calculation of co-occurrence matrices, we clip some of the most significant bitplanes of ...
متن کاملنهانکاوی در تصاویر JPEG بر مبنای دستهبندی ویژگیهای آماری و تصمیمگیری دو مرحلهای
Abstract In this paper, we propose a comprehensive steganalysis scheme for JPEG images. In this method, the optimized features which can interpret high distinction between cover and stego images are extracted from images. These features have been selected after a careful study on modifications caused by different steganography algorithms on statistical characteristics of images. Furthermore, us...
متن کاملSteganalysis of LSB Embedded Images Using Gray Level Co- Occurrence Matrix
This paper proposes a steganalysis technique for both grayscale and color images. It uses the feature vectors derived from gray level co-occurrence matrix (GLCM) in spatial domain, which is sensitive to data embedding process. This GLCM matrix is derived from an image. Several combinations of diagonal elements of GLCM are considered as features. There is difference between the features of stego...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 41 شماره
صفحات -
تاریخ انتشار 2008